Data-driven Sequential Monte Carlo in Probabilistic Programming
نویسندگان
چکیده
Most of Markov Chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) algorithms in existing probabilistic programming systems suboptimally use only model priors as proposal distributions. In this work, we describe an approach for training a discriminative model, namely a neural network, in order to approximate the optimal proposal by using posterior estimates from previous runs of inference. We show an example that incorporates a data-driven proposal for use in a non-parametric model in the Anglican probabilistic programming system [9]. Our results show that data-driven proposals can significantly improve inference performance so that considerably fewer particles are necessary to perform a good posterior estimation.
منابع مشابه
Applications of Probabilistic Programming (Master's thesis, 2015)
This thesis describes work on two applications of probabilistic programming: the learning of probabilistic program code given specifications, in particular program code of one-dimensional samplers; and the facilitation of sequential Monte Carlo inference with help of data-driven proposals. The latter is presented with experimental results on a linear Gaussian model and a non-parametric dependen...
متن کاملA Compilation Target for Probabilistic Programming Languages
Forward inference techniques such as sequential Monte Carlo and particle Markov chain Monte Carlo for probabilistic programming can be implemented in any programming language by creative use of standardized operating system functionality including processes, forking, mutexes, and shared memory. Exploiting this we have defined, developed, and tested a probabilistic programming language intermedi...
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملApplying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties
The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case. Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...
متن کاملProbabilistic Multi Objective Optimal Reactive Power Dispatch Considering Load Uncertainties Using Monte Carlo Simulations
Optimal Reactive Power Dispatch (ORPD) is a multi-variable problem with nonlinear constraints and continuous/discrete decision variables. Due to the stochastic behavior of loads, the ORPD requires a probabilistic mathematical model. In this paper, Monte Carlo Simulation (MCS) is used for modeling of load uncertainties in the ORPD problem. The problem is formulated as a nonlinear constrained mul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1512.04387 شماره
صفحات -
تاریخ انتشار 2015